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Abstract

Although object-oriented programming (OOP) can be a powerful tool for the LabVIEW developer, its
usefulness and acceptance is often limited by the way it is taught. Much of the existing information is built
on examples and approaches derived from programming languages such as C++ or Java. Consequently,
the resulting approach runs (implicitly or explicitly) counter to LabVIEW's fundamental programming
paradigm: dataflow. The author presents some techniques for applying OO techniques in a way that
capitalizes on their the advantages, but without abandoning the very things that makes the LabVIEW

approach to problem solving so valuable.



Introduction

Before starting on the main part of this material it will be helpful to do a tiny bit of self-assessment. For
the purposes of this discussion, if you are curious about object-oriented concepts, but have no real
experience with C++ or Java, consider yourself in "Group 1". If you have used C++ or Java and are
looking for more information on how to use object-oriented programming in the context of a
LabVIEW-based development environment, consider yourself in "Group 2". Now having made that
basic distinction, let me assure you that I will do all within my power to catch those of you in Group 2
up to where the folks in Group 1 are. I put the matter in that way because, as I have learned while
teaching LabVIEW itself, students often have an easier time learning about something new if they don't

think they already know what it is that I’'m trying to teach them.

While on the topic of setting expectations, I need to acknowledge that I am not going to be explaining
the mechanics of creating classes or defining methods. For that level of instruction, I would recommend
the latest version of the LVOOP training class that NI offers. Unlike an earlier iteration of the course,
which was really pretty bad, the current class does a good job of getting you started. Unfortunately, it

shares a limitation that is common to many LabVIEW courses: It teaches the mechanics very well, but

spends far too little time showing how to program properly.

Due to this limitation, LabVIEW developers who want to gain in-depth knowledge about
object-oriented programming must resort to trying to learn what they need from classes and books
where the training agenda and content has largely been set by text-based languages such as C++ and

Java.

To see why this situation is a problem, we need to consider a common aspect of language.

The Challenge of Language

The most obvious purpose of any language (whether human or computer) is communications — which is
to say: the expression of ideas and concepts from one entity to another. In human language the point is
communications between people, with computer languages the communication is between a human

operator or programmer and a computer — or perhaps even between two computers.



The thing to remember, however, is that this relationship between concepts and language is a two-way
street. Without getting into the philosophical and linguistic nitty-gritty, language has been shown to affect
not only sow the entities using it express ideas and concepts, but also inform and limit what ideas and

concepts they can express.

The Origins of Computer Languages

In order to apply that observation to computer languages we need to go back to the beginning, which is
to say, the early 1940s. Back then the question of how to program a computer was a non-issue
because, in the beginning, computers weren't programmed. Rather, they were custom-built machines
designed to compute the answers to specific math problems, and to do so faster than the humans that
were hired to do calculations with pencil and paper. In fact, that's why the original machines were called

electronic computers — to distinguish them from the humans for whom “computer” was their job title.

However, the world changed forever May 6th 1949. That was the day that EDSAC, the world's first

fully operational programmable computer, booted up at Cambridge University.

It’s first job was to run a pair of programs which were, again, math problems. One generated a table of

squares of numbers, the other calculated a list of prime numbers. Of course from that point forward, it



was game on, and the question of the day was: If you can create a machine that can in theory perform
any calculation you want, how do you define the calculations that you want it to do? And the related
question was naturally, How do you communicate with the beast? Then, as now, the two issues were
inextricably linked because the possible answers for the first question are always constrained by the
answer you give to the second. In other words, you can’t implement a programming paradigm or

methodology if you can’t effectively communicate that methodology to the computer.

Over the years, advances in computer speed and capability allowed the available techniques for
interacting with computers to evolve from toggle switches and push buttons, to perforated paper tape,
punch-cards, magnetic tape and disks, and eventually keyboards and video displays based on various
flat-screen technologies. Mirroring these advances, the logical content of what we were saying to
computers, and how we were saying it, went through a similar evolution. It went from
hardware-dependent binary look-up tables, to mnemonic-based assembler code, to “high-level”

languages like COBOL, FORTRAN and BASIC.

At each step in this process, increasing levels of abstraction allowed the human user to care less and less
about how the underlying computing hardware worked. Thanks to abstraction, by the time you got to
programming in any of the languages I just listed, you for the most part didn’t care what hardware your
program ran on. Your only worry was whether the computer spoke the same “dialect” of the language
that you did. During this same time period certain languages came to specialize in various types of work.
For example, COBOL was used primarily in business, FORTRAN was largely limited to science and

engineering application, and BASIC was for beginners.

Eventually, people began to think about how to design universal programming languages to go with their
universal computing machines. These efforts gave birth to a long list of so-called “general-purpose”
languages including C, Pascal, and eventually C++ and Java. But regardless of the level of abstraction
that was applied, the virtual machine that was being defined was for the most part still a mathematical
machine. Consequently, the one thing that all these techniques had in common was the goal of
developing a list of calculations that the programmer wanted the computer to perform. A situation, by
the way, that suited mathematician just fine since most mathematicians I have known (and certainly the

one to which I am married ) have been very ducks-in-a-row, B-follows-A kind of folks.



Of course this tendency to see the world as one big “to do list” wouldn’t be a problem if the primary use
of computers was still to be a “computer”. Unfortunately, most computer programmers today are not

mathematicians, and most of the programs we write have surprisingly little to do with mathematics.

A History of Object-Oriented Techniques

In fact it didn’t take long for other folks to start realize that while the discipline of mathematics might be
helpful, working with computers was fundamentally different from mathematics. While it was true that
computers are useful for mathematics, they are also useful for a lot of other things, as well. Pioneers like

Tony Hoare (England), Edsger Dijkstra (Netherlands) and David Parnas (Canada) began a quest to

uncover the fundamental principles that should govern good software development.

As far back as the late 1950s, people in the artificial intelligence community began experimenting with
the idea of software that could represent or model the real world and not just perform simple
calculations. We have them to thank for the concept of objects. Over the next several years, what we
today call object-oriented programming grew as a logical extension of such foundational design
techniques as structured programming and abstract data types. In fact, the fundamental distinction of

OOP was of an object as an abstract data type.

The first programming language that was specifically designed to support and express object-oriented
concepts came in 1967 when Simula 67 made its debut — the work of two Norwegians (Ole-Johan
Dahl and Kristen Nygaard). It is notable that this language was designed to attack the very real-world

problem of how to simulate the actions of physical systems, the first step on the road to process control



in the modern sense. Eventually, Smalltalk (1980), C++ (1983) and Java (1995) came along as well.
Curiously, these very “advanced” languages still require programmers to express their thoughts as a

typed list of words...

However in the early 1980s, while Bjarne Stroustrup was was working on C with Classes at Bell Labs,
changes were afoot in Austin Texas at a small hardware company named National Instruments. At the
time, their main product was a line of GPIB-interface boards so they were naturally trying to figure out
how to sell more boards. It didn’t take them long to realize that the main thing limiting their market was
the difficulty their customers (who were mainly engineers) had in programming the boards to do what
they wanted. So they asked their existing customer base a rather simple question: “Assuming anything
was possible, how would you like to be able to define the operation of your systems?”” And the answer

they got was loud and clear: “Block Diagrams”.

To make a long story short, to create this block-diagram programming environment, the decision was
made to use the Apple Macintosh as a development platform (because it had a 32-bit processor and
the requisite graphics capabilities) and implement the new graphical language using object oriented
techniques. To appreciate the risk involved in this decision you need to remember that in 1985 there
were few commercially-available object oriented programming environments available, and none for the

Apple Macintosh. Instantly, the development team’s list of deliverables went from:
1. Game-changing revolutionary graphical programming environment
To:

1. Object-oriented programming environment

2. Game-changing revolutionary graphical programming environment

Now since LabVIEW’s earliest roots are in the object-oriented world, it would seem logical that it

would be an ideal platform for implementing object-oriented concepts, and in fact it is. For one simple
example, consider the basic definition of an object as an abstract data type — which is clearly a dataflow
concept. A concept, I might add, that text-based list-oriented languages like C++ have a lot of difficulty

representing accurately.



From this simple example we can see why, from the standpoint of LabVIEW developers, most of the
instructional materials available today are problematic. They don’t teach the principles of
object-oriented development, but rather the C++ and Java expression of those principles, and just as
you can’t be really good in a human language until you get beyond translating and begin to think in it, so
you can only be good in a computer language when you learn to think in that language. Of course the
really good news for engineers is that they already think in terms of dataflow block diagrams. In
addition, I would take this commonly-cited truism one step further and assert that engineers already
think in object-oriented terms — remember Simula 677 Its use of object-oriented logic was successful
because it reflected the way engineers already thought about real-world problems like hardware
simulation. So what we really need as engineers is not a new way of thinking about problem solving, but

rather to be shown how to apply what we already know.

In LabVIEW you have an excellent, perhaps perfect, environment for object-oriented development: a
block-diagram based development interface that speaks the mother-tongue of engineering combined
with a dataflow structure that can easily and clearly represent the concepts of object-oriented

programming.



Dataflow Object-Oriented Programming

So with all the foundation for our discussion finally laid, we can start looking at object-orientation in
LabVIEW, and how it can be used. The first thing to note is that there are really two complementary

kinds of object-orientation present in LabVIEW.

Implicit OOP

This is what might be called “normal” LabVIEW, and has been largely in its present form since Version
1.0. Although it does not explicitly use classes, its object-oriented underpinnings are visible if you look
for them — and if the code is any good. All the basic object concepts are there, albeit in an abbreviated

or “lite” form. For example, encapsulation is accomplished through the creation of subVlIs, and clusters

provide a mechanism for implementing abstract datatypes.

Advantages:

e The block-diagram format is very straight-forward to read
e [ts concepts are easy to understand
e Inherently parallel

e Introduces the idea of classes through object references

Disadvantages:

e Not a robust object-oriented implementation (e.g. no user classes and limited polymorphism)
e Poor style can result in a high degree of coupling between modules

o Errors in modularization can result in low cohesion.

Explicit OOP

Beginning with LabVIEW 8.2, classes have been publicly available — though to be honest it took a
couple releases before they were really useful. The primary factor limiting developers learning about and

using of this form of object-orientation is that NI considers it an advanced topic.



Advantages:

e Dynamic Dispatch (runtime polymorphism)
e Extends modularity in ways that inherently serves to reduce coupling
e LabVIEW classes (especially inside libraries) define a cohesive environment for implementing

functionality

Disadvantages:

e Can cause code to balloon in size. Poorly done, classes can become the software equivalent of
a Swiss Army knifes. Oh yeah, it can do a lot of stuff, but do you really want to carry it around
in your pocket all day because you might need to saw off a tree limb at any moment?

e Done poorly (and it often is) an object-oriented program can become, and is often decried as,
write-only code. You may get it running, but forget trying to go back later and figure out what
you did by simply reading the code.

o The current implementation of LVOOP exhibits the “only-child” problem (i.e. you can’t really

have true sibling classes that share parent data as well as parent functionality),

Basic Principles

Now let's look at some of the fundamental concepts that should guide our work. As we go you will
notice that some of these ideas are specifically related to object-oriented development, and some are
just good ideas in general and so apply to object-oriented work as well. It is important, however, to
remember that I am not talking about design “rules”. Rather I am starting with the assumption that while
you all want to learn to be good programmers, the simple fact of the matter is that rules don't make you
good — at anything. Moral rules don’t make you a morally good person, traffic rules don’t make you a

good driver, and programming rules certainly don’t make you a good programmer.

Rules may be useful for 3 or 4 things, but making you good is not one of them. What makes you "good"
is assimilating and internalizing the underlying concepts. Or to put the point is a more philosophical way,

“goodness” isn’t about doing, it’s about being. So you need to be the kind of developer that can...



Be Bold

For the most part, these principles are in no particular order. This one, however, is the exception, for
without boldness, spending time on the rest of these ideas is just a waste of time. I won't try to define
precisely what boldness is — there are, after all, whole books written on the topic. I will, instead,

concentrate of the idea of boldness as it applies to our current inquiry.

To be successful in applying object-oriented concepts to LabVIEW we need to be bold enough to

consider how these ideas apply to our work without the "overriding" baggage that comes with
text-based languages. Just because C++ may have to do things in a particular way due to the language's
limitations, that doesn't mean LabVIEW, which doesn't share those limitations, has to do it the same

way.

Rather, we need to take the time to learn the principles of object-orientation, without burdening

ourselves with a lot of foolhardy rules.

Let the Application Tell You How to Proceed

I have known many developers that have gotten themselves boxed into a corner because they only
knew one program structure and they tried to force-fit every project into that structure. Sometimes they
take this position due to a lack of experience, sometimes its a lack of understanding, and occasionally its

a simple matter of ego.

Regardless of the reason, the better approach is to let each project’s requirements tell you what it wants
and needs, while recognizing that requirements are not a homogenous mass. Requirements can, and
typically do, vary from one section or module of an application to the next. For example, in one module
that is handling a large volume of data, efficient memory management might be the most important
consideration; whereas in another that is interfacing with hardware, speed might be of paramount

importance.

Therefore, every program, done correctly, will be a mixture of techniques. Your goal as a programmer

should be to implement what is needed, not just what you know how to do. Of course you might



complain that this sort of mixed approach will mean that you will need to spend a lot of time learning
new things. To such a complaint I would reply, “Maybe, and maybe not...” — you’ll see what I mean

later.

Develop Tools Not Programs
In the military there is an old expression:
“Amateurs discuss tactics, professionals discuss logistics”

The idea here is that while tactics need to be good to win battles, wars are won and lost based on the
organization’s ability to get personnel and material where they are needed. In that spirit, I would like to

propose a programming version of that statement:
“Amateurs write programs, professionals create toolboxes”

The point of this phrase is to insure that our focus is on the keeping the most important thing, the most
important thing. No matter how important and valuable the programs you create for your organization
may be, reusable and maintainable code is even more valuable — and the reason is easy to see.

Maintainability reduces cost because nothing is static. Requirements change, platforms change, and

environments change, so all code will need to be modified someday.

Reusability, in turn, maximizes return-on-investment by allowing you to leverage past work to complete
new tasks. But even if your boss is a complete doofus that doesn’t appreciate this point, there is still a

very practical benefit to you personally in creating a toolbox.

Say you build your first system and it takes you 6 months to complete it. When your boss comes to you
a couple weeks later wanting you to design and build another new system I can assure you that he or
she is not going to be happy camper when they hear that its going to take another 6 months — they’ll
probably be thinking more along the lines of 6 weeks. Your bosses may not use the term

“return-on-investment” but, be assured, they still expect it.

Only Incorporate Useful Complexity

A common mistake that I have seen in a lot of code is incorporating complexity that doesn't make the



application better (no matter how you define that word), just more complex. There are many examples
of what I am talking about, but in terms of object-oriented design, one common problem is seen in
applications where everything gets turned into a class. This error results in programs that I guess are
technically correct. Of course I could only guess because the applications as whole were almost totally
incomprehensible. So we need to ask ourselves, just because something could be a formal class, is it

going to be helpful to make it one?

Another common source of complexity is over-reaching. By that I mean that there is a point where a
design can become too abstract, too general, and too inclusive. It might seem a laudable goal to try and
develop a software framework that will serve for every possible application — and up to about the 80%
coverage mark things don't get too bad. However, as you attempt to add support for an ever-greater
numbers of special cases, you can find yourself implementing ever-more obscure bits of functionality.

Unfortunately, once implemented, this obscure functionality has to be maintained and supported.

By the way, this is a good time to point out that complex behavior of a finished application or system
never arises from complex functionality in the application’s components. In fact, quite the opposite is
true. Paradoxically, complex system behavior is always easiest to create when the individual

components are very simple. In general, you need to be very skeptical of complexity.



Let Objects Represent Things

While this point might seem obvious, it apparently is not as I have on multiple occasions seen code
incorporating things like an “add-two-numbers-together” object. One cause for such confusion is the
curious modern tendency to turn nouns into verbs. So we run into questions like, is a “message” a thing

or “messaging” something that objects do?

Another thing that can seem to complicate matters is that some things are concrete — in other words,
they have height, depth, breadth and mass — while others are purely logical constructs, like a pressure
waveforms or a database record. Just because something lacks a physical form that doesn’t mean that

its not an object, logical form is just as important.

Finally, one last thing to remember about objects is that they need to be meaningfully distinct. For
example, to represent my car you might define a class of object called “car” with a subclass “hyundai”
and a further subclass “elantra”. The question is, would it be worthwhile to extend this hierarchy further
to provide separate subclasses for red Elantras and blue Elantras? Well it depends, “meaningful” is a
highly contextual term. For a typical auto mechanic the answer would be “no” because when you are
fixing or tuning engines the color of the paint on a car isn't a meaningful distinction. If, however, the

context for your application is a body and paint shop, the answer might be “yes”.

Reduce Redundancy

In the field of database design, folks talk about how to reduce or eliminate redundancy — a lot. The
problem with redundancy (which is defined as the duplication of data) is twofold. First, the duplicate
copies take up memory unnecessarily. Second, if a database has redundant data in it, the logic has to be

able to deal with the situation where the various duplicate copies are not all the same.

Naturally the same concept applies when talking about code. You want to minimize duplicated code to
save on memory footprint, but also to simplify the work involved when the duplicated code needs to
change. Most people have no problem with this idea, but with object-oriented work it can be easy to

mindlessly create multiple subclass methods that all do the exact same thing. The way to address this

issue is to always give careful consideration as to where you put the logic that implements methods.



Realize That Organization Makes Life Good

A skill that the human species developed many, many millennia ago was the ability to identify or
recognize patterns in the world. Now while pattern recognition can sometimes run amuck (as in the
movie A Beautiful Mind) this ability is crucial in gaining understanding. Consequently, if our goal is
avoid creating write-only code, it behooves us to organize our work in such a way as to make it easy to
grasp — preferably without an instruction manual. So here are some organizational ideas that, over the

years, | have found to be useful:

e Be consistent in naming. Don’t give two logically distinct entities the same name, or use two
different names to refer to the same logical entity. If you are part of a development team, it might
be worth your time to create a naming lexicon for entities in the team’s software. This simple
convention can result in huge gains since you are no longer having to waste your creativity either
thinking up names for things, or figuring out what a coworker meant when they use a particular
label.

e Give classes hierarchical names. This kind of structure makes it easy to see the logical
relationships between classes by improving readability. I use the underscore character to delimit
levels in the class name, as in: Instrument_DMM_HP34401. It is easy to see how sorting a
number of classes utilizing this structure by name would make it easy to visualize the class
relationships.

e Place distinct class hierarchies in separate libraries. As we shall see in a moment, access control
is important and putting all the files related to a given class hierarchy in a library enhances your
ability to control access to subclasses.

e C(Create a directory structure that mirrors the class hierarchy structure. Again, because I have
defined this convention I don’t have to waste even a moment wondering about where to store

VIs on disk. I have already decided and simple have to reuse that decision.

Automate Processes

I find no end to the irony that people like us who make our living automating things for other people, so

rarely take the time to automate things for ourselves. Do you find yourself doing the same thing over and



over again? Are you getting any real benefit from doing these tasks manually? One very powerful
technique that LabVIEW makes available is scripting. Basically, scripting (also sometimes called
metaprogramming) is the process of writing LabVIEW code that, when run, writes LabVIEW code.

The technique is not simple and is (surprise, surprise) poorly documented, but it offers significant
potential for streamlining the mundane, repetitive tasks that always seem to be jumping in the way of

your creativity.

A related automation technology is VI server, especially the parts that allow you to directly manipulate
the structure and contents of projects. Finally, don’t forget that there are no rules against writing utilities
to automatically do things like creating directory structures like the one we just discussed for keeping

classes organized, building applications or programmatically maintaining the contents of enumerations.

Hide Stuff

What I'm talking about here is the computer science concept of Information Hiding and in the

object-oriented design approach it has some important practical implications:

o The purpose of the class data is to hold information that is private to that class and its
subclasses. While there is often the need to uniquely identify particular objects or populate a
class with runtime data, this information can often be read from the database storing setup
information, and not passed into it as parameters — this is especially true with the higher-level
classes of a class hierarchy. This idea implies yet another type of hierarchy in your application.
In addition to a structural hierarchy and a functional hierarchy, there is also a data hierarchy.

e The top-most class in a given user-defined class hierarchy should form the interface that
exposes the hierarchy’s functionality. Specifically, the application calling the class should never
call a subclass directly. In fact, in a well-designed application, such direct access should never
be necessary. Packaging the class hierarchy in a library is helpful in enforcing this constraint
because it provides an additional layer of access control.

e Subclasses should be loaded dynamically. One of the things that can cause code size to balloon
is having classes loaded into memory that are not being used. Dynamic loading is easy to

implement and can reduce the application’s runtime memory footprint. A further simplification



can be realized from utilizing the hierarchical naming convention that was mentioned earlier.

Getting Down to Particulars

Finally, let’s consider how these principles can fit together. By the way, before you ask: Yes, we are
going to gloss over a lot... For instance, we won’t consider in detail the design or structure of the
non-class portion of applications. For issues related to overall program architecture, I do however
recommend a 1999 paper by Lynn Stein. She approaches the issue of computer architecture from the
perspective of robotics and I believe that much more attention needs to be paid to some of the ideas

that she discusses — perhaps a NIWeek session for next year.

While talking about glossing over things, one more thing upon which I will not elucidate is iteration. By
that I mean that I will walk us straight through the design and development processes. The thing to
remember is that if you see the various steps we will cover as metaphorical pearls, the “Golden Braid”
that is holding them together will often double-back on itself and loop around. To get the most out of
any process, you must be willing to go back and rework earlier representations and logic to incorporate

insights that you gain while working on the project.

Where’s the Objects?

Given that one of the basic principle that we discussed before was that an application will typically
incorporate a mixture of techniques, a major consideration has to be, “Where do we look in our
applications to identify objects that we can turn into useful classes?” There are many places that

experience will reveal to you, but let's consider three of the most significant to get us started.

Real-World Objects

The first, and most obvious, place to look for objects in your application is with what the application
itself is doing. For example, I once worked on an application that involved the testing and calibration of
meters that measure the flow of a gas. The calibration portion of the application was particularly

important because the metered flow was what provided revenue for the meters’ eventual owners.



The meter manufacturer makes several different models of flow meters that all have different flow ranges
and accuracies, but use the same system for testing and calibration. Moreover the basic test operations
remain constant because industry standards specify how the meters are to be tested. The only variability
in how the system operates from one model of meter to the next lies in the commands that the test

system used to interact with the meter under test (MUT).

In the real world, the test and calibration process consists of passing physical objects of different types
(the meters), through a process that does essentially the same thing each time it runs. It can make sense,
therefore, to model that structure in software by creating an application where the core application logic

is constant but it operates on different software objects that flow through it.
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Functional Objects

A second place that you can look for objects in your application is with things in the implementation that
you choose to embody the application's logic. For example, in the preceding meter test and calibration
system, there is nothing inherent in the test process that would require a database, but let’s say that
being a smart developer you decide to include one to store program setups, operating parameters,
object definitions and test results. Moreover, let's say the customer is enthusiastic about the idea
because there are already plans to centralize their configuration management and test results in a

network database.

In this situation (or even if the customer isn’t enthusiastic about the idea) it can be valuable to abstract



the database connection as an object that provides methods implementing the database interactions that
are needed. This sort of structure can be valuable because database locations, database management
systems, database structure all can — and do — change over time. Encapsulating the database in a class
structure can effectively hide the details that could cause the calling application to break by defining a
clear and consistent API. In addition, when changes do need to be made later, the class structure clearly

identifies where the changes need to be made.
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Structural Objects

A third place to look for objects can be in the overall structure of the application itself. We have already
asserted that smart developers make use of databases to manage the data in their systems. Smart
developers also break their applications up into distinct pieces that run in parallel either inside the same
instance of LabVIEW, or as separate executables that communicate using a standard protocol such as
TCP/IP. With such a high-level architecture, these parallel bits can also be seen as objects: structural

objects.

Creating such a class structure, and appropriate methods to go along with it, can turn the potentially
onerous tasks of managing the operation of, and interactions between, the various parts of an

application into child’s-play. If you think about it, there are only so many different kinds of modules



possible, and there are only so many things that you can do from the management level to any these

modules.
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Simplifying these high-level type operations can offer other advantages as well. For example, a problem
that often comes up with architectures utilizing multiple parallel processes is how to pass data from the
acquisition process to the GUI process. Proper handling of the structural objects in the application can
simply make the problem go away by removing the need to pass data altogether. All you have to do is
define the front panel of the acquisition process to go into a subpanel in the GUI process. Now you
have no communications problems because there is no communications going on. Although the GUI
looks like a single monolithic interface, the user is really looking at the front panels of the processes that

are actually acquiring the data.
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Implementing the Object Classes

So having defined the principles that should guide our work, and the places that we can look to find
useful objects, we can begin to consider how to implement the object classes to get the most from them.
The first thing we need to consider is the number of objects that we will be instantiating at one time. In
the gas meter example given earlier, the system is designed to test just one meter at a time so we will
only have one meter object instantiated. While this situation will often be the case, there can be

situations where we might need to have more than one instance of a given type of object.

For example, the meter manufacturer could decide to fundamentally redesign the entire system such that
it would test multiple MUTs simultaneously, and so would have multiple meter objects to manage
simultaneously. To create sibling objects that are capable of sharing parental data, as well as logic, all
you have to do is store the needed parent data in a DVR, and make the parent class data a reference to

that DVR.
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In the data access VIs for the parent objects, you then use an in-place node to access the DVR’s

contents.
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Because the parent data is stored outside the parent objects, all parent objects that have access to a

given DVR reference appear as though they are the same parent.

Object-Oriented Functional Decomposition

Now that we have our top-most object classes defined, we need to start taking them apart. Continuing

with our meter example, we need to look for the natural divisions occurring within that broad category.
Or to put it another way, what useful distinctions exist within the meter class that we could turn into
subclasses? Considering the client’s product line we immediately see two broad types of meters: those
that meter gas in metric units and those that use imperial units. Moreover this basic selection has
significant impact in terms of the way the test results are setup and the results evaluated. So we now

have two subclasses: metric and imperial.

Repeating the process, we now look at each of these subclasses and see if we can identify any useful
distinctions within them. At this point, we find that the only useful distinction left is the one between

individual models.

Obviously, to do this work effectively, we will have needed to complete our analysis of the application
requirements and have the non-class part of the project pretty well mapped out. The information we will
be needing specifically are the operations that the class interface will need to support (this will give us

our methods) and the data that will be needed to perform those operations. An important thing to



remember when creating the list of methods that we will be needing, is that we are looking for a superset
of actions that includes all/ the possible subclasses. If a given method is not needed for a particular

subclass, you have two options:

In the case where the required logic for a particular method is usually the same, you can put the logic in
the parent class and then override the parent method with one in the subclass. This override method can

either do nothing, or perhaps does something different that this particular subclass needs.

parent class
Method 1

- \ b - , b - ___. _______ b
l-’ child class 1 \ l-’ child class 2 \ l-’ child class 3 \
\ no override J \ no override K \ no override J

. - e - . -

child class 4
Method 1

Alternately if the parent method does nothing and all the “magic” happens in the subclasses, you can

choose to not override the parent method in the subclass and let the empty parent method handle the
call. The big point here is that within the context of a single application, you need a consistent criteria for

deciding how you are going to handle these situations.

parent class
Method 1 (empty)

i
' ™
lf' child class 4 \
, i
\ no override ‘
. -~

child class 1 child class 2 child class 3
Method 1 Method 1 Method 1

And while you’re at it don’t forget that you can call a parent method from within a subclass. This tactic



can be particularly effective if a subclass needs to basically the same as the parent, but with a few added
operations before of after the parent’s functionality. For example, earlier we talked about using a DVR

to hold the data associated with a parent class. You can extend this idea to subclasses like this:
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Here, the override VI for a subclass calls the parent method to initialize itself and then performs
whatever logic is needed to initialize its own private data. Extending this logic through multiple levels of a

class hierarchy creates a very detailed, well-formed data structure that is essentially self-initializing.

One last critical step before going on is to grab a cup of your beverage of choice and sit back and think
about what you have done so far. Remember what we covered earlier about language informing and
limiting what can be expressed? Well, the same is true of the logical “vocabulary” that was just defined.
So before going on, take a few minutes to consider the application as a whole and think about the
aspects of it that you aren’t sure about. If some of the assumptions that you made about the system turn
out to not be valid will you be able to modify the design without redoing it all? Likewise, from your
conversations with the customer, what are the things that are likely to change over time? It is certain that
out meter manufacturer will add new types of meters, but what about other possible changes? Can the
design incorporate scope changes gracefully? Is it clear where in the design the modifications for each

potential scope change should go?

And if somebody comes by and asks what you are doing drinking a cup of coffee and staring at your

computer screen, just tell them you are saving time.



Building the Basic Structure

Obviously, the first step here is to create the required classes, edit the class icon banners, assign the
inheritances and finally define the data for the classes. If you are going to need virtual sibling objects,
now is a good time to define the parent data DVR and implement the mechanism that you will be using
to make the DVR reference available to the parents that will use it. If you do create a DVR to hold the

parent data always make the DVR datatype a type definition.

Next, in the top-most class of each class hierarchy, create a VI to instantiate required objects based on
program inputs and, using the dynamic dispatch template, create methods to implement the various
operations that the application will need to perform. As you create these top-most parent methods —
many of which will probably only serve as a call entry-point and so functionally do nothing — it can be a
good idea to leave notes on the block diagram concerning what the method does. To save time later,
also be sure to edit the icon for the method now. The icon that you give the method now will be

inherited later when you create override VIs in the subclasses.

Creating the override VIs comes next, however, when creating these I like to go through and create all
the override VIs without worrying about implementing the functionality that they will encapsulate. Rather

I simply place a free label on the block diagram containing the text:
#Incomplete

The result is that when I have finished creating all the empty override VI’s I can go to the LabVIEW

bookmark manager and it will give me a nice todo list of all the things I still have left to implement.
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In addition, the empty override methods can provide a quick and easy mechanism for determining

whether the correct subclasses are being called.

In Closing...

With this work done, you have the basic object-oriented skeleton in place. All you have to do now is fill
in the blanks with the required functionality and that, as they say, is all there is to it, but before stopping I

want to leave you with a couple final thought about programming approaches.

First, after all the talking and thinking we did about how to do a dataflow object-oriented design, the
actual implementation may have seemed rather — well — anticlimactic. However, I would like to assert
that in a sense that is as it should be. One thing that I have learned in doing this work for the better part
of 30 years, is that the hardest part of any job is learning how to think about it properly. Once you have

the correct mental vision of the finished system, the implementation often just falls out on the floor.

Second, I want to leave you with some very sage advice from Dr Parnas that he gave in a 1999

interview:

“l would advise students to pay more attention to the fundamental ideas rather than the latest
technology. The technology will be out-of-date before they graduate. Fundamental ideas never
get out of date. However, what worries me about what | just said is that some people would think
of Turing machines and Goedel's theorem as fundamentals. | think those things are fundamental



but they are also nearly irrelevant. | think there are fundamental design principles, for example
structured programming principles, the good ideas in "Object Oriented" programming, etc.”

David Lorge Parnas

Dr Parnas’ basic point here is simple: Programming fads come and go, but good ideas are forever. As
professionals we need to learn the good ideas and hang onto them, regardless of how the next
generation tries to dress them up in new clothes. This is why to “keep current” you don’t necessarily

have to learn a lot of new things. There are, after all, only so many fundamental ideas.

A second point is that we shouldn’t become too attached to a particular favorite buzzword because
sooner or later it will fall out of fashion. For example, we are beginning to see that object-oriented
this-and-that is already on its way out and another set of principles are on their way in. Think that is an
overstatement? Consider this:

“Object-oriented programming is eliminated entirely from the introductory curriculum, because it

is both anti-modular and anti-parallel by its very nature, and hence unsuitable for a modern CS
curriculum.”

Robert Harper - Professor Carnegie Mellon University

That, gentle listeners, is what is known as the “handwriting on the wall”. Currently there are a couple
contenders to be the OO-replacement. One is based on a branch of mathematics called
lambda-calculus that was first postulated in the 1930s. The other draws inspiration from the 1950s, and
specifically the languages FORTRAN and Lisp. One potentially positive note for the years ahead is that
unlike the situation when object-orientation burst on the scene as a new kind of language, most people
so far seem to be seeing these “new” paradigms as design approaches that any competent language

should be able to support.

For example, LabVIEW can already supports both of these techniques — and has since 1986.
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